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Abstract

Deep learning (DL) methods have achieved state-of-the-

art performance in the task of single image rain removal.

Most of current DL architectures, however, are still lack of

sufficient interpretability and not fully integrated with phys-

ical structures inside general rain streaks. To this issue,

in this paper, we propose a model-driven deep neural net-

work for the task, with fully interpretable network struc-

tures. Specifically, based on the convolutional dictionary

learning mechanism for representing rain, we propose a

novel single image deraining model and utilize the proximal

gradient descent technique to design an iterative algorith-

m only containing simple operators for solving the model.

Such a simple implementation scheme facilitates us to un-

fold it into a new deep network architecture, called rain con-

volutional dictionary network (RCDNet), with almost every

network module one-to-one corresponding to each opera-

tion involved in the algorithm. By end-to-end training the

proposed RCDNet, all the rain kernels and proximal oper-

ators can be automatically extracted, faithfully characteriz-

ing the features of both rain and clean background layers,

and thus naturally lead to its better deraining performance,

especially in real scenarios. Comprehensive experiments

substantiate the superiority of the proposed network, espe-

cially its well generality to diverse testing scenarios and

good interpretability for all its modules, as compared with

state-of-the-arts both visually and quantitatively.

1. Introduction

Images taken under various rain conditions often suffer

from unfavorable visibility, and always severely affect the

performance of outdoor computer vision tasks, such as ob-

jection tracking [5], video surveillance [37], and pedestrian

detection [31]. Hence, removing rain streaks from rainy

images is an important pre-processing task and has drawn

much research attention in the recent years [39, 26].

In the past years, various methods have been proposed

for single image rain removal task. Many researchers made
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（c）Illustration of the proposed RCDNet

（a）RCD model for rain layer

（b）Algorithm for solving the proposed model      

Figure 1. (a) Rain convolutional dictionary (RCD) model for rain

layer. (b) The formulated optimization model and the correspond-

ing iterative solution algorithm. (c) Visual illustration of the pro-

posed RCDNet one-to-one corresponding to the algorithm (b).

focus on exploring physical properties of rain layer and
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background layer, and introduced various prior structures to

regularize and separate them. Along this research line, the

representative methods include layer priors with Gaussian

mixture model (GMM) [28], discriminative sparse coding

(DSC) [51], and joint convolutional analysis and synthesis

sparse representation (JCAS) [13]. Especially, inspired by

the fact that rain streaks repeatedly appear at different lo-

cations over a rainy image with similar local patterns like

shape, thickness, and direction, very recently researchers

represented this configuration of rain layer by the convolu-

tional dictionary learning model [15, 16]. Such a represen-

tation finely delivers this prior knowledge by imposing rain

kernels (conveying repetitive local patterns) on sparse rain

maps, as intuitively depicted in Fig. 1 (a). These method-

s thus achieved state-of-the-art (SOTA) performance when

the background can also be well represented, e.g., by low-

rank prior in surveillance video sequences [25].

Albeit effective in certain applications, the rationality of

these techniques depends on the subjective prior assump-

tions imposed on the unknown background and rain layers

to be recovered. In real scenarios, however, such learning

regimes could not always adapt to different rainy images

with complex, diverse, and variant structures collected from

different resources. Besides, these methods generally need

time-consuming iterative computations, often with efficien-

cy issue in real applications.

Driven by the significant success of deep learning (DL)

in low level vision, recent years have also witnessed the

rapid progress of deep convolutional neural networks (C-

NN) for single image rain removal [8, 52, 53, 40]. The cur-

rent DL-based derainers mainly focus on designing network

modules, and then train network parameters based on abun-

dant rainy/clean image pairs to extract the background lay-

er. Typical deraining network structures include deep detail

network (DDN) [9], recurrent squeeze-and-excitation con-

text aggregation module (RESCAN) [27], progressive im-

age deraining network (PReNet) [35], spatial attentive unit

(SPANet) [41], and many others.

These DL strategies, however, also possess evident d-

eficiencies. The most significant one is their weak inter-

pretability. Network structures are always complicated and

diverse, making it difficult to analyze the role of differen-

t modules and understand the underlying insights of their

mechanism. Besides, most of them treat CNN as an encap-

sulated end-to-end mapping module without deepening into

the rationality, and neglect the intrinsic prior knowledge of

rain streaks such as sparsity and nonlocal similarity. This

makes this methodology easily trapped into the overfitting-

to-training-sample issue.

To alleviate the aforementioned issues, this paper de-

signs an interpretable deep network, which sufficiently con-

siders the characteristics of rain streaks and attempts to

combine the advantages of the conventional model-driven

prior-based and current data-driven DL-based methodolo-

gies. Specifically, our contributions are mainly three-fold:

Firstly, we propose a concise rain convolutional dictio-

nary (RCD) model for single image by exploiting the in-

trinsic convolutional dictionary learning mechanism to en-

code rain shapes, and specifically adopt the proximal gra-

dient technique [2] to design an optimization algorithm for

solving it. Different from traditional solvers for the RCD

model containing complex operations (e.g., Fourier trans-

formation), the algorithm only contains simple computa-

tions (see Fig. 1 (b)) easy to be implemented by general

network modules. This facilitates our algorithm capable of

being easily unfolded into a deep network architecture.

Secondly, by unfolding the algorithm, we design a new

deep network architecture for image deraining, called RCD-

Net. The specificity of this network lies on its exact step-

by-step corresponding relationship between its modules and

the algorithm operators, and thus successively possesses the

interpretability of all its modules as that of all steps in the al-

gorithm. Specifically, as shown in Fig. 1 (b) and (c), each it-

eration of the algorithm contains two sub-steps, respectively

updating the rain map (convoluted by the learned rain ker-

nels) and background layer, and each stage of the RCDNet

also contains two sub-networks (M-net and B-net). Each

output of the intermediate layer in the network is thus with

clear interpretation, which greatly facilitates a deeper analy-

sis on what happens inside the network during training, and

a comprehensive understanding why the network works or

not (as the analysis presented in Sec. 5.2).

Thirdly, comprehensive experimental results substantiate

the superiority of the RCDNet beyond SOTA conventional

prior-based and current DL-based methods both quantita-

tively and visually. Especially, attributed to its well inter-

pretability, not only the underlying rationality and insights

of the network can be intuitively understood through visu-

alizing the amelioration process (like the gradually rectified

background and rain maps) over all network layers by gen-

eral users, but also the network can yield generally useful

rain kernels for expressing rain shapes and proximal opera-

tors for delivering the prior knowledge of background and

rain maps for a rainy image, facilitating their general avail-

ability to more real-world rainy images.

The paper is organized as follows. Sec. 2 reviews the re-

lated rain removal work. Sec. 3 presents the RCD model for

rain removal as well as the algorithm designed for solving

it. Then Sec. 4 introduces the unfolding deep network for

the algorithm. The experimental results are demonstrated in

Section 5 and the paper is finally concluded.

2. Related work

In this section, we give a brief review on the most related

work on rain removal for images. Depending on the input

data, the existing algorithms can be categorized into two

3104



groups: video based and single image based ones.

2.1. Video deraining methods

Garg and Nayar [10] first tried to analyze the visual

effects of raindrops on imaging systems, and utilized a

space-time correlation model to capture the dynamics of

raindrops and a physics-based motion blur model to il-

lustrate the photometry of rain. For better visual quality,

they further proposed to increase the exposure time or re-

duce the depth of field of a camera [12, 11]. Later, both

temporal and chromatic properties of rain were considered

and then background layer was extracted from rainy video

by utilizing different strategies such as K-means cluster-

ing [55], Kalman filter [33], and GMM [3]. Besides, a

spatio-temporal frequency based raindrop detection method

was provided in [1].

In recent years, researchers introduced more intrinsic

characteristics of rainy video to the task, e.g., similarity and

repeatability of rain streaks [4], low-rankness among multi-

frames [20], and sparsity and smoothness of rain streak-

s [18]. To handle heavy rain and dynamic scenes, a ma-

trix decomposition based video deraining algorithm was p-

resented in [36]. Afterwards, rain streaks were encoded as

a patch based GMM to adapt a wider range of rain varia-

tions [45]. More characteristics of rain streaks in a rainy

video were explored including repetitive local patterns and

multi-scale configurations and they were described as multi-

scale convolutional sparse coding model [25]. More recent-

ly, there are some DL-based methods proposed for this task.

Chen et al. [19] presented a CNN architecture and utilized

superpixel to handle torrential rain fall with opaque streak

occlusions. To further improve visual quality, Liu et al. [30]

designed a joint recurrent rain removal and reconstruction

network that integrated rain degradation classification, rain

removal, and background details reconstruction. To handle

dynamic video contexts, they further developed a dynamic

routing residue recurrent network [29]. Though these meth-

ods work well for videos, they cannot directly perform in

single image cases due to the lack of temporal knowledge.

2.2. Single image deraining methods

Compared with video deraining task under a sequence

of images, rain removal from a single image is much more

challenging. The early attempts utilized the model-driven s-

trategies by decomposing a single rainy image into low fre-

quency part (LFP) and high frequency part (HFP) and then

specifically extracted rain layer from the HFP based on var-

ious processing such as guided filter [6, 21] and nonlocal

means filtering [23]. Later, researchers made more focus on

exploring the prior knowledge of rain and rain-free layers

of a rainy image, and designing proper regularizer to extract

and separate them [22, 38, 51, 28, 42, 56]. E.g., [13] consid-

ered the specific sparsity characteristics of rain-free and rain

parts and expressed them as the joint analysis and synthesis

sparse representation models, respectively. [15] used a sim-

ilar manner to deliver local repetitive patterns of rain streaks

across the image as the RCD model. Albeit achieving good

performance on certain scenarios, these prior-based meth-

ods rely on the subjective prior assumptions, while could

not always generally work well for practical complicated

and highly diverse rain shapes in real rainy images collect-

ed from different resources.

Recently, a number of DL-based single image rain streak

removal methods were proposed through constructing di-

verse network modules [8, 9, 27, 52, 53]. To handle

heavy rain, Yang et al. [49] developed a multi-stage join-

t rain detection and estimation network for single image

(JORDER E). Very recently, Ren et al. [35] designed a

PReNet that repeatedly unfolded several Resblocks and a

LSTM layer. Wang et al. [41] presented an attention unit

based SPANet for removing rain in a local-to-global man-

ner. Through using abundant rainy/clean image pairs to

train the deep model, these methods achieve favorable visu-

al quality and SOTA quantitative measures of derained re-

sults. Most of these methods, however, just utilize network

modules assembled with some off-the-shelf components in

current DL toolkits to directly learn background layer in an

end-to-end way, and largely ignore the intrinsic prior struc-

tures inside the rain streaks. This makes them lack of evi-

dent interpretability in their network architectures and still

have room for further performance enhancement.

At present, there is a new type of single image derainers

that try to combine prior and DL methodologies. For ex-

ample, Mu et al. [32] utilized CNN to implicitly learn prior

knowledge for background and rain streaks, and formulated

them into traditional bi-layer optimization iterations. Wei et

al. [44] provided a semi-supervised rain removal method

(SIRR) that described rain layer prior as a general GM-

M and jointly trained the backbone–DDN. Albeit obtain-

ing initial success, they still use CNN architectures as their

main modules to construct the network, which is thus still

lack of sufficient interpretability.

3. RCD model for single image deraining

3.1. Model formulation

For a observed color rainy image denoted as O ∈
R

H×W×3, where H and W are the height and width of the

image, respectively, it can be rationally separated as:

O = B +R, (1)

where B and R represent the background and rain layers of

the image, respectively. Then, the aim of most of DL-based

deraining methods is to estimate the mapping function (ex-

pressed by a deep network) from O to B (or R).
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Instead of heuristically constructing a complex deep

network architecture, we first consider the problem un-

der the conventional prior-based methodology through ex-

ploiting the prior knowledge for representing rain streaks

[13, 15, 25]. Specifically, as shown in Fig. 1 (a), by adopt-

ing the RCD mechanism, the rain layer can be modeled as:

Rc =

N∑

n=1

C
c
n ⊗Mn, c = 1, 2, 3, (2)

where Rc denotes the cth color channel of R, and

{Cc
n}n,c ⊂ R

k×k is a set of rain kernels which describes

the repetitive local patterns of rain streaks, and {Mn}n ⊂
R

H×W represents the corresponding rain maps represent-

ing the locations where local patterns repeatedly appear.

N is the number of kernels and ⊗ is the 2-dimensional

(2D) convolutional operation. For conciseness, we rewrite

(2) as R =
∑N

n=1 Cn ⊗ Mn throughout the paper, where

Cn ∈ R
k×k×3 is the tensor form of Cc

ns and the convolution

is performed between Cn and the matrix Mn one channel by

one channel. Then, we can rewrite the model (1) as:

O = B +

N∑

n=1

Cn ⊗Mn. (3)

It should be noted that the rain kernels actually can be

viewed a set of convolutional dictionary [16] for repre-

senting repetitive and similar local patterns underlying rain

streaks, and a small number of rain kernels can finely repre-

sent wide range of rain shapes1. They are common knowl-

edge for representing different rain types across all rainy

images, and thus could be learned from abundant training

data by virtue of the strong learning capability of end-to-

end training manner of deep learning (see more details in

Sec. 4). Unlike rain kernels, the rain maps must vary with

the input rainy image as the locations of rain streaks are

totally random. Therefore, for predicting the clean image

from a testing input rainy one, the key issue is to output

Mns and B from O with the rain kernels Cns fixed, and the

corresponding optimization problem is:

min
M,B

∥∥∥∥∥O−B−

N∑

n=1

Cn⊗Mn

∥∥∥∥∥

2

F

+αg1(M)+βg2(B), (4)

where M ∈ R
H×W×N is the tensor form of Mns. α and β

are trade-off parameters. g1(·) and g2(·) mean the regulariz-

ers to deliver the prior structures of Mn and B, respectively.

3.2. Optimization algorithm

Since we want to build a possibly perfect step-by-

step corresponding deep unfolding network architecture for

1We simply set N = 32 for all our experiments.

solving the problem (4), it is critical to build an algorith-

m which contains only simple computations easy to be

transformed to network modules. The traditional solvers

for RCD-based model usually contain certain complicated

operations, e.g., the Fourier transform and inverse Fourier

transform [16, 46, 25], which are hard to accomplish such

exact transformation from algorithm to network structure.

We thus prefer to build a new algorithm for solving the

problem through alternately updating M and B by proxi-

mal gradient method [2]. In this manner, only simple com-

putations can be involved. The details are as follows:
Updating M: The rain maps M can be updated by solv-

ing the quadratic approximation [2] of the problem (4) as:

min
M

1

2

∥∥∥M−
(
M(s−1)−η1∇f

(
M(s−1)

))∥∥∥
2

F
+ αη1g1 (M) ,

(5)

where M(s−1) is the updating result of the last itera-

tion, η1 is the stepsize parameter, and f
(
M(s−1)

)
=∥∥∥O−B(s−1)−

∑N
n=1 Cn⊗M

(s−1)
n

∥∥∥
2

F
. Corresponding to

general regularization terms [7], the solution of Eq. (5) is:

M(s) = proxαη1

(
M(s−1)−η1∇f

(
M(s−1)

))
. (6)

Moreover, by substituting

∇f
(
M(s−1)

)
=C⊗T

(
N∑

n=1

Cn⊗M
(s−1)
n +B(s−1)−O

)
, (7)

where C ∈ R
k×k×N×3 is a 4-D tensor stacked by Cns, and

⊗T denotes the transposed convolution2, we can obtain the
updating formula for M as3:

M(s) =

proxαη1

(
M(s−1)−η1C⊗

T

(
N∑

n=1

Cn⊗M
(s−1)
n +B(s−1)−O

))
,

(8)

where proxαη1
(·) is the proximal operator dependent on the

regularization term g1(·) with respect to M. Instead of

choosing a fixed regularizer in the model, the form of the

proximal operator can be automatically learned from train-

ing data. More details will be presented in the next section.

Updating B: Similarly, the quadratic approximation of

the problem (4) with respect to B is:

min
B

1

2

∥∥∥B−
(
B(s−1)−η2∇h

(
B(s−1)

))∥∥∥
2

F
+βη2g2(B) . (9)

where ∇h
(
B(s−1)

)
=

∑N
n=1 Cn⊗M

(s)
n +B(s−1)−O, and

it is easy to deduce that the final updating rule for B is3:

B(s)=

proxβη2

(
(1− η2)B

(s−1)+η2

(
O−

N∑

n=1

Cn⊗M
(s)
n

))
.

(10)

2For any tensor A ∈ R
H×W×3, we can calculate the nth channel of

C⊗T A by
∑3

c=1 C{:,:,n,c} ⊗T A{:,:,c}.
3It can be proved that, with small enough η1 and η2, Eq. (8) and Eq.

(10) can both lead to the reduction of objective function (4) [2].
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（a）Illustration of the entire RCDNet

（b）The design of a single stage

Residual

Figure 2. (a) The proposed network with S stages. The network takes a rainy image O as input and outputs the learned rain kernel C, rain

map M, and clean background image B. (b) Illustration of the network architecture at the sth stage. Each stage consists of M-net and B-net

to accomplish the update of rain map M and background layer B, respectively. The images are better to be zoomed in on screen.

where proxβη2
(·) is the proximal operator correlated to the

regularization term g2(·) with respect to B.

Based on this iterative algorithm, we can then construct

our deep unfolding network as follows.

4. The rain convolutional dictionary network

Inspired by the recently raised deep unfolding techniques

in various tasks such as deconvolution [54], compressed

sensing [50], and dehazing [48], we build a network struc-

ture for single image rain removal task by unfolding each

iterative steps of the aforementioned algorithm as the corre-

sponding network module. We especially focus on making

all network modules one-to-one corresponding to the algo-

rithm implementation operators, for better interpretability.

As shown in Fig. 2 (a), the proposed network consists of

S stages, corresponding to S iterations of the algorithm for

solving (4). Each stage achieves the sequential updates of

M and B by M-net and B-net. As displayed in Fig. 2 (b),

exactly corresponding to each iteration of the algorithm, in

each stage of the network, M-net takes the observed rainy

image O and the previous outputs B(s−1) and M(s−1) as

inputs, and outputs an updated M(s), and then B-net takes

O and M(s) as inputs, and outputs an updated B(s).

4.1. Network design

The key issue of unrolling the algorithm here is how to
represent the two proximal operators involved in (8) and
(10) while other operations can be naturally performed with
generally used operators in normal networks [34]. In this
work, we simply choose a ResNet [14] to construct the two
proximal operators as many other works did [47, 48]. Then,
we can separately decompose the updating rules for M as
(8) and B as (10) into sub-steps and achieve the following

procedures for the sth stage of the RCDNet:

M-net :





R̂(s) = O − B(s−1),

R̃(s) =
∑N

n=1 Cn ⊗M
(s−1)
n ,

E(s) = η1C ⊗T
(
R̃(s) − R̂(s)

)
,

M(s) = proxNet
θ
(s)
m

(
M(s−1) − E(s)

)
,

(11)

B-net :





R(s) =
∑N

n=1 Cn ⊗M
(s)
n ,

B̂(s) = O −R(s),

B(s)=proxNet
θ
(s)
b

(
(1−η2)B

(s−1)+η2B̂
(s)
)
,

(12)

where proxNet
θ
(s)
m

(·) and proxNet
θ
(s)
b

(·) are two ResNets

consisting of several Resblocks with the parameters θ
(s)
m and

θ
(s)
b at the sth stage, respectively.

We can then design the network architecture, as shown

in Fig. 2, by transforming the operators in (11) and (12)

step-by-step. All the parameters involved can be automat-

ically learned from training data in an end-to-end manner,

including {θ
(s)
m , θ

(s)
b }Ss=1, rain kernels C, η1, and η2.

It should be indicated that both of the two sub-networks

are very interpretable. As shown in Fig. 2 (b), the M-net

accomplishes the extraction of residual information E(s) of

rain maps. Specifically, R̂(s) is the rain layer estimated with

the previous background B(s−1), and R̃(s) is the rain lay-

er achieved by the generative model (2) with the estimated

M(s−1). Then the M-net calculates the residual informa-

tion between the two rain layers obtained in this two ways,

and extracts the residual information E(s) of rain maps with

the transposed convolution of rain kernels to update the rain

map. Next, the B-net recovers the background B̂(s) estimat-

ed with current rain kernel and rain maps M(s), and fuses

this estimated B̂(s) with the previously estimated B(s−1) by
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weighted parameters η2 and (1−η2) to get the updated back-

ground B(s). Here, we set M(0) as 0 and initialize B(0) by

a convolutional operator on O4.

Remark: From Fig. 2, the input tensor of proxNet
θ
(s)
b

(·)

has the same size H ×W × 3 as the to-be-estimated B. Ev-

idently, this is not beneficial for learning B since most of the

previous updating information would be compressed due to

few channels. To better keep and deliver image features,

we simply expand the input tensor at the 3rd mode for more

channels in experiments (see more in supplemental file).

4.2. Network training

Training loss. For simplicity, we adopt the mean square

error (MSE) [21] for the learned background and rain layer

at every stage as the training objective function:

L =

S∑

s=0

λs

∥∥∥B(s)−B
∥∥∥
2

F
+

S∑

s=1

γs

∥∥∥O−B−R(s)
∥∥∥
2

F
, (13)

where B(s) and R(s) separately denote the derained result

and extracted rain layer as expressed in (12) at the sth stage

(s = 0, 1, · · · , S). λs and γs are tradeoff parameters5.

Implement details. We implement our network based

on a NVIDIA GeForce GTX 1080Ti GPU. We adopt the

Adam optimizer [24] with the batch size of 16 and the patch

size of 64×64. The initial learning rate is 1×10−3 and di-

vided by 5 every 25 epochs. The total epoch is 100.

5. Experimental results

We first conduct ablation study and model visualization

to verify the underlying mechanism of the proposed net-

work, and then present experiments on synthesized bench-

mark datasets and real datasets for performance evaluation.

5.1. Ablation study

Dataset and performance metrics. In this section, we

use Rain100L to perform all the ablation studies. The syn-

thesized dataset consists of 200 rainy/clean image pairs for

training and 100 pairs for testing [49]. Two performance

metrics are employed, including peak-signal-to-noise ratio

(PSNR) [17] and structure similarity (SSIM) [43]. Note that

as the human visual system is sensitive to the Y channel of a

color image in YCbCr space, we compute PSNR and SSIM

based on this luminance channel.

Table 1 reports the effect of stage number S on deraining

performance of our network. Here, S = 0 means that the

initialization B(0) is directly regraded as the recovery result.

4More network design details are described in supplemental file.
5In all experiments, we simply set λS = γS = 1 to make the out-

puts at the final stage play a dominant role, and other parameters as 0.1 to

help find the correct parameter in each stage. More parameter settings are

discussed in supplementary material.

Table 1. Effect of stage number S on the performance of RCDNet.
Stage No. S=0 S=2 S=5 S=8 S=11 S=14 S=17 S=20

PSNR 35.93 38.46 39.35 39.60 39.81 39.90 40.00 39.91

SSIM 0.9689 0.9813 0.9842 0.9850 0.9855 0.9858 0.9860 0.9858

Stage 1

26.54 / 0.8347

26.52 / 0.8302

Stage 17

38.79 / 0.9844 

38.71 / 0.9838

Stage 16

35.78 / 0.9553

35.37 / 0.9708 

25.84 / 0.8165

Stage 11

30.92 / 0.8851

31.38 / 0.9158

/

Stage 6

27.69 / 0.8446

25.85 / 0.8203

27.36 / 0.8438

Figure 3. Visualization of the recovery background B(s), B̂(s) as

expressed in Eq. (12), and the rain layer R(s) at different stages.

The stage number S is 17. PSNR/SSIM for reference. The images

are better to be zoomed in on screen.

Figure 4. At the final stage s = 17, the extracted rain layer, rain

kernels Cn, and rain maps Mn for the input O in Fig. 3. The lower

left is the rain kernels C learned from Rain100L. The images are

better to be zoomed in on screen.

Taking S = 0 as a baseline, it is seen that only with 2 stages,

our method achieves significant rain removal performance,

which validates the essential role of the proposed M-net and

B-net. We also observe that when S = 20, its deraining

performance is slightly lower than that of S = 17 since

larger S would make gradient propagation more difficult.

Based on such observation, we easily set S as 17 throughout

all our experiments. More ablation results and discussions

are listed in supplementary material.

5.2. Model verification

We then show how the interpretability of this RCDNet

facilitates an easy analysis for the working mechanism in-

side the network modules.

Fig. 3 presents the extracted background layer B(s) (1st

row), B̂(s)(2nd row) that represents the role of M-net in help-

ing restore clean background, and rain layer R(s) (3rd row)

at different stages. We can find that with the increase of s,

R(s) covers more rain streaks and fewer image details, and

B̂(s) and B(s) are also gradually ameliorated. These should
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Figure 5. 1st column: input rainy image (upper) and groundtruth (lower). 2nd-12th column: derained results (upper) and extracted rain

layers (lower) by 11 competing methods. PSNR/SSIM for reference. Bold indicates top 1st rank.

be attributed to the proper guidance of the RCD prior for

rain streaks and the mutual promotion of M-net and B-net

that enables the RCDNet to be evolved to a right direction.

Fig. 4 presents the learned rain kernels and the rain maps

for the input O in Fig. 3. Clearly, the RCDNet finely ex-

tracts proper rain layers explicitly based on the RCD mod-

el. This not only verifies the reasonability of our method

but also manifests the peculiarity of our proposal. On one

hand, we utilize a M-net to learn sparse rain maps instead

of directly learning rain streaks that makes learning process

easier. On the other hand, we exploit training data to auto-

matically learn rain kernels representing general repetitive

local patterns of rain with diverse shapes. This facilitates

their general availability to more real-world rainy images.

Table 2. PSNR and SSIM comparisons on four benchmark dataset-

s. Bold and bold italic indicate top 1st and 2nd rank, respectively.
Datasets Rain100L Rain100H Rain1400 Rain12

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 26.90 0.8384 13.56 0.3709 25.24 0.8097 30.14 0.8555

DSC[51] 27.34 0.8494 13.77 0.3199 27.88 0.8394 30.07 0.8664

GMM[28] 29.05 0.8717 15.23 0.4498 27.78 0.8585 32.14 0.9145

JCAS[13] 28.54 0.8524 14.62 0.4510 26.20 0.8471 33.10 0.9305

Clear[8] 30.24 0.9344 15.33 0.7421 26.21 0.8951 31.24 0.9353

DDN[9] 32.38 0.9258 22.85 0.7250 28.45 0.8888 34.04 0.9330

RESCAN[27] 38.52 0.9812 29.62 0.8720 32.03 0.9314 36.43 0.9519

PReNet[35] 37.45 0.9790 30.11 0.9053 32.55 0.9459 36.66 0.9610

SPANet[41] 35.33 0.9694 25.11 0.8332 29.85 0.9148 35.85 0.9572

JORDER E[49] 38.59 0.9834 30.50 0.8967 32.00 0.9347 36.69 0.9621

SIRR[44] 32.37 0.9258 22.47 0.7164 28.44 0.8893 34.02 0.9347

RCDNet 40.00 0.9860 31.28 0.9093 33.04 0.9472 37.71 0.9649

5.3. Experiments on synthetic data

Comparison methods and datasets. We then compare

our network with the current SOTA single image derain-

ers, including model-based DSC [51], GMM [28], and J-

CAS [13]; DL-based Clear [8], DDN [9], RESCAN [27],

PReNet [35], SPANet [41], JORDER E [49], and SIR-

R [44]6, based on four benchmark datasets, including

Rain100L, Rain100H [49], Rain1400 [9], and Rain12 [28].

Fig. 5 illustrates the deraining performance of all com-

peting methods on a rainy image from Rain100L. As shown,

the deraining result of RCDNet is better than that of other

methods in sufficiently removing the rain streaks and finely

recovering the image textures. Moreover, the rain layer ex-

tracted by RCDNet contains fewer unexpected background

details as compared with other competing methods. Our R-

CNet thus achieves the best PSNR and SSIM.

Table 2 reports the quantitative results of all competing

methods. It is seen that our RCDNet attains best derain-

ing performance among all methods on each dataset. This

substantiates the flexibility and generality of our method, in

diverse rain types contained in these datasets.

5.4. Experiments on real data

We then analyze the performance of all methods on two

real datasets from [41]: the first one (called SPA-Data) con-

tains 638492 rainy/clean image pairs for training and 1000

testing ones, and the second one (called Internet-Data) in-

cludes 147 rainy images without groundtruth.

Table 3 and Fig. 6 compare the derained results on SPA-

Data of all competing methods visually and quantitatively.

It is easy to see that even for such complex rain patterns, the

proposed RCDNet still achieves an evident superior perfor-

6The code/project links for these comparison methods are listed in

supplementary material.
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/

Figure 6. Rain removal performance comparisons on a rainy image from SPA-Data. The images are better to be zoomed in on screen.

Input DSC GMM JCAS Clear DDN

RESCAN PReNet SPANet JORDER_E SIRR RCDNet

Figure 7. Derained results for two samples with various rain patterns from Internet-Data. The images are better to be zoomed in on screen.

Table 3. PSNR and SSIM comparisons on SPA-Data [41].
Methods Input DSC GMM JCAS Clear DDN

PSNR 34.15 34.95 34.30 34.95 34.39 36.16

SSIM 0.9269 0.9416 0.9428 0.9453 0.9509 0.9463

Methods RESCAN PReNet SPANet JORDER E SIRR RCDNet

PSNR 38.11 40.16 40.24 40.78 35.31 41.47

SSIM 0.9707 0.9816 0.9811 0.9811 0.9411 0.9834

mance than other methods. Especially, similar to its supe-

riority in synthetic experiments, it is also observed that our

method better removes the rain streaks and recovers image

details than other competing ones.

Further, we select two real hard samples with various

rain densities to evaluate the generalization ability of al-

l competing methods. From Fig. 7, we can find that tra-

ditional model-based methods tend to leave obvious rain

streaks. Although DL-based comparison methods remove

apparent rain streaks, they still leave distinct rain marks or

blur some image textures. Comparatively, our RCDNet bet-

ter preserves background details as well as removes more

rain streaks. This shows its good generalization capability

to unseen complex rain types.

6. Conclusion
In this paper, we have explored the intrinsic prior struc-

ture of rain streaks that can be explicitly expressed as con-

volutional dictionary learning model, and proposed a nov-

el interpretable network architecture for single image de-

raining. Each module in the network can one-to-one corre-

spond to the implementation operators of the algorithm de-

signed for solving the model, and thus the network is almost

“white-box” with easily visualized interpretation for all its

module elements. Comprehensive experiments implement-

ed on synthetic and real rainy images validate that such in-

terpretability brings a good effect of the proposed network,

and especially facilitates the analysis for how it happens in

the network and why it works in testing prediction process.

The extracted elements through the end-to-end learning by

the network, like the rain kernels, are also potentially useful

for the related tasks on rainy images.
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